

Directions:

* Show your thought process (commonly said as "show your work") when solving each problem for full credit.
* If you do not know how to solve a problem, try your best and/or explain in English what you would do.
* Good luck!

Problem	Score
1	Points
2	10
3	10
4	10
5	10
6	10

1. Simplify these expressions:

$$
\begin{aligned}
\cos \left(-\frac{4 \pi}{3}\right) & =-\cos \left(\frac{\pi}{3}\right) \\
& =-\frac{1}{2}
\end{aligned}
$$

$$
\tan \left(\frac{\pi}{4}\right)=\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=1
$$

$$
=\left(\frac{\sqrt{3}}{2}\right)^{2}+2 \cdot\left(-\frac{1}{2}\right)+3 \cdot 1
$$

2. Short answer questions.
\triangle Justify each answer with formulas or facts for full credit; do not just write "yes" or "no" \uparrow.
(a) Given $f(x)=\sin (x)$, does there exist $x \in \mathbb{R}$ such that $f(x)=2$? Why or why not? No, the maximum y-coudinate on the unit circle is 1, no matter where you walk to.
(b) If a mass attached to a spring is moving in simple harmonic motion, can we use the function

$$
d(t)=a \tan (\omega t)
$$

to model it's displacement? Why or why not?
No, simple haramii motion is modeled by $a \sin (\omega t)$ or $a \cos (\omega t)$.
tangent is inappropriate because $\operatorname{ton}(x) \rightarrow \infty$ as $x \rightarrow \frac{\pi}{2}$ from the left so a spring would have to stretch infinitely.
(c) Is it possible for linear speed to be less than angular speed? Why or why not?

$$
\begin{aligned}
& \text { Yes, angular speed is } \omega=\frac{0}{t} \\
& \text { linear speed is } v=\frac{s}{t}=\frac{r \theta}{t}=r \cdot \frac{0}{t}=r \cdot \omega
\end{aligned}
$$

If $1<1$ then linens speed is less than angular speed.
(d) When proving a trig identity, are we allowed to square both sides? Why or why not?

No, you need to either
(1) Start with one side, perform steps to reach the other or
(2) simplify both sides oud "meet in the middle"
3. Prove these identities:

$$
\begin{aligned}
& \text { * } \frac{1}{\sin x}-\sin x=\cot x \cdot \cos x \\
& L H S=\frac{1}{\sin x}-\sin x \cdot \frac{\sin x}{\sin x}=\frac{1}{\sin x}-\frac{\sin ^{2} x}{\sin x} \\
& =\frac{1-\sin ^{2} x}{\sin x} \\
& \sin ^{2} x+\cos ^{2} x=1 \\
& \cos ^{2} x=1-\sin ^{2} x \\
& =\frac{\cos ^{2} x}{\sin x} \\
& \underset{\text { law }}{\text { fran }}=\frac{\cos x}{\sin x} \cdot \cos x \stackrel{5.2}{=} \cot x \cdot \cos x=\text { RHo } \\
& * \cos (\alpha+\beta) \cos (\alpha-\beta)=\begin{array}{l}
1-\sin ^{2} \alpha-\cos ^{2} \alpha-\sin ^{2} \beta
\end{array}\left(1-\cos ^{2} \beta\right)
\end{aligned}
$$

Start w/ LHS; looks like addition identity.

$$
\begin{aligned}
& L H S=\cos (\alpha+\beta) \cos (\alpha-\beta) \stackrel{7.2}{=}(\cos \alpha \cos \beta-\sin \alpha \sin \beta)(\cos \alpha \cos \beta+\sin \alpha \sin \beta) \\
& (A-B) \cdot(A+B) \\
& A^{2}-\frac{B^{2}}{=} \cos ^{2} \alpha \cos ^{2} \beta-\underbrace{\sin ^{2} \alpha}_{\text {convert to }} \underbrace{\sin ^{2} \beta} \sin ^{2} \beta \text { version } \\
& =\cos ^{2} \alpha \cos ^{2} \beta-\left(1-\cos ^{2} \alpha\right)\left(1-\cos ^{2} \beta\right) \\
& \text { expand } \\
& \text { dist law } \\
& =\cos ^{2} \alpha \cos ^{2} \beta-\left[\left(1-\cos ^{2} \alpha\right) \cdot 1-\left(1-\cos ^{2} \alpha\right) \cdot \cos ^{2} \beta\right] \\
& =\cos ^{2} \alpha \cos ^{2} \beta-\left(1-\cos ^{2} \alpha-\cos ^{2} \beta+\cos ^{2} \alpha \cos ^{2} \beta\right) \\
& =\cos ^{2} \alpha \cos ^{2} \beta-1+\cos ^{2} \alpha+\cos ^{2} \beta=\cos ^{2} \alpha \cos ^{2} \beta \\
& \text { factor }_{\text {out }}=\cos ^{2} \alpha-\left(1-\cos ^{2} \beta\right) \\
& \stackrel{-1}{5.2} \cos ^{2} \alpha-\sin ^{2} \beta=R+1 S
\end{aligned}
$$

4. Suppose the shaded region is $6 \pi \mathrm{in}^{2}$. Find the radius of the circle; your answer should be an integer.

$$
\begin{aligned}
& \text { area of sector: } \\
& A=\frac{1}{2} r^{2} \theta, 0 \text { in ind. } \\
& 6 \pi=\frac{1}{2} r^{2} \cdot 240 \cdot \frac{\pi}{105} 3 \\
& 6 \pi=\frac{4^{2} \pi}{2 \cdot 3} \cdot r^{2} \\
& \frac{3}{2 \pi} \cdot 6^{3}=\frac{2 / 3}{3} \cdot r^{2} \cdot \frac{3}{2 \pi} \\
& 9=r^{2} \\
& r=3 \\
& \sqrt{r^{2}}= \pm \sqrt{9} \leftarrow+\text { morin. } \\
& r=\sqrt{7}=3
\end{aligned}
$$

5. Suppose a triangle has $a=50, b=50, \angle A=60^{\circ}$. Solve the triangle.

Solve for $<B$
Solve for $<C$
50. $\frac{\sin 60^{\circ}}{50}=\frac{\sin B}{50} .80 \quad 180^{\circ}=\angle A+\angle D+\angle C$
$\sin B=\sin 60^{\circ}$
$180^{\circ}=60^{\circ}+60^{\circ}+\angle C$
$\sin B=\frac{\sqrt{3}}{2}$

$$
\angle C=60^{\circ}
$$

So $\angle B=60^{\circ}$ or $\angle B=120^{\circ}$, possibly
two solution case. But if $\angle B$ were 120°,
then $180^{\circ}=\angle A+\angle B+\angle C$

$$
180^{\circ}=60^{\circ}+120^{\circ}+\angle C
$$

$\angle C=0^{\circ}$ imacrible!
So one solution case.

$$
\frac{\sin 60^{\circ}}{50}=\frac{\sin 60^{\circ}}{c}
$$

$$
\begin{aligned}
& c=\sin 60^{\circ} \cdot \frac{50}{\sin 60^{\circ}} \\
& c=50
\end{aligned}
$$

$$
\angle B=60^{\circ}
$$

6. Suppose a mass attached to a spring is moving in simple harmonic motion. The displacement $f(t)$ is shown in the following graph.

Here, t is measured in seconds and $f(t)$ is measured in centimeters.
(a) Find a function $f(t)$ describing the displacement. $y=a \cos \omega t$ since cos starts at 1 , we just transforms it. $a=2$. period is 4. Solus
cosine is reflected aroid x-axis.
(b) How many centimeters is the mass displaced at time $t=\frac{3}{2} ?\left(y=-2 \cos \left(\frac{\pi}{2} t\right)\right.$

